Câu 5.50 trang 187 sách bài tập Đại số và Giải tích 11 Nâng cao

Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị hàm số, cắt trục tung tại một điểm cách đều tiếp điểm và gốc tọa độ.

    Đề bài

    Chứng minh rằng tiếp tuyến tại điểm bất kì của đồ thị hàm số

                            \(y = {1 \over 2}\sqrt {x - 4{x^2}} \,\,\,\,(C)\)

    Cắt trục tung tại một điểm cách đều tiếp điểm và gốc tọa độ.

    Lời giải chi tiết

    Để hàm số có đạo hàm thì ta phải có

                           \(x - 4{x^2} > 0 \Leftrightarrow 0 < x < {1 \over 4}.\)

    Với điều kiện \(0 < x < {1 \over 4},\) ta có

                                    \(y' = {{1 - 8x} \over {4\sqrt {x - 4{x^2}} }}.\)

    Gọi \({M_0}\left( {{x_0};{y_0}} \right)\) là một điểm tuy ý thuộc đồ thị(C) ; ta có \({y_0} = {1 \over 2}\sqrt {{x_0} - 4x_0^2,} \) \(y' = {{1 - 8{x_0}} \over {4\sqrt {{x_0} - 4x_0^2} }}\). Vậy phương trình tiếp tuyến tại \({M_0}\left( {{x_0},{y_0}} \right)\) là

             \(y = {{1 - 8{x_0}} \over {4\sqrt {{x_0} - 4x_0^2} }}\left( {x - {x_0}} \right) + {1 \over 2}\sqrt {{x_0} - 4x_0^2} \)

    Tiếp tuyến này cắt trục tung tại điểm T có tung độ là

    \(\eqalign{& {y_T} = {{1 - 8{x_0}} \over {4\sqrt {{x_0} - 4x_0^2} }}\left( {0 - {x_0}} \right) + {1 \over 2}\sqrt {{x_0} - 4x_0^2}   \cr& \,\,\,\,\, = {{\left( {1 - 8{x_0}} \right)\left( { - {x_0}} \right) + 2\left( {{x_0} - 4x_0^2} \right)} \over {\sqrt {{x_0} - 4x_0^2} }} \cr&  = {{{x_0}} \over {4\sqrt {{x_0} - 4x_0^2} }} > 0 \cr} \)

    Khoảng cách \(T{M_0}\) được tính bởi công thức

    \(\eqalign{ T{M_0} &= {\left( {{x_0} - 0} \right)^2}  \cr& + {\left( {{1 \over 2}\sqrt {{x_0} - 4x_0^2}  - {{{x_0}} \over {\sqrt {{x_0} - 4x_0^2} }}} \right)^2}  \cr&  = x_0^2{\left( {{{2\left( {{x_0} - 4x_0^2} \right) - {x_0}} \over {\sqrt {{x_0} - 4x_0^2} }}} \right)^2}  \cr& = x_0^2 + {{{{\left( {{x_0} - 8x_0^2} \right)}^2}} \over {16\left( {{x_0} - 4x_0^2} \right)}}  \cr&  = {{16x_0^3 - 64x_0^4 + x_0^2 - 16x_0^3 + 64x_0^4} \over {16\left( {{x_0} - 4x_0^2} \right)}} \cr&  = {{x_0^2} \over {16\left( {{x_0} - 4x_0^2} \right)}} \cr} \)

    Vậy

            \(\left| {T{M_0}} \right| = {{{x_0}} \over {4\sqrt {{x_0} - 4x_0^2} }} = \left| {TO} \right| = {y_T}\)

    Điều này chứng tỏ, điểm T cách đều tiếp điểm \({M_0}\) và gốc tọa độ O.

    Chú ý: Có thể chứng minh bào toán này bằng phương pháp hình học như sau:

    Với \(0 \le x{1 \over 4}\) thì \(y \ge 0\) ta có

    \(\eqalign{& y = {1 \over 2}\sqrt {x - 4{x^2}}  \Leftrightarrow 4{y^2} + 4{x^2} - x = 0 \cr&  \Leftrightarrow {x^2} + {x \over 4} + {y^2} = 0  \cr&  \Leftrightarrow {\left( {x - {1 \over 8}} \right)^2} + {y^2} = {\left( {{1 \over 8}} \right)^2} \cr} \)

    Vậy đồ thị (C) là phần đường tròn thuộc góc phần tư thứ nhất (vì \(x \ge 0\) và \(y \ge 0\)) tâm \(I\left( {{1 \over 8};0} \right)\), bán kính \(R = {1 \over 8}\) (h.5.6)

    Áp dụng tính chất: từ một điểm T ngoài đường tròn, kẻ được hai tiếp tuyến với đường tròn là \(TM_0\) và TO và ta có \(|TM_0|=|TO|\) (đpcm).

                 

    Xemloigiai.com

    SBT Toán lớp 11 Nâng cao

    Giải sách bài tập toán hình học và đại số lớp 11. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và đại số toán 11 nâng cao với cách giải nhanh và ngắn gọn nhất

    ĐẠI SỐ VÀ GIẢI TÍCH SBT 11 NÂNG CAO

    HÌNH HỌC SBT 11 NÂNG CAO

    CHƯƠNG 1: HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

    CHƯƠNG 2: TỔ HỢP VÀ XÁC SUẤT

    CHƯƠNG 3: DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

    CHƯƠNG 4: GIỚI HẠN

    CHƯƠNG 5: ĐẠO HÀM

    CHƯƠNG 1: PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG

    CHƯƠNG 2: ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

    CHƯƠNG 3. VECTƠ KHÔNG GIAN. QUAN HỆ VUÔNG GÓC

    Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

    Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm