Bài 90 trang 131 SGK giải tích 12 nâng cao

Giả sử đồ thị (G) của hàm số cắt trục tung tại điểm A và tiếp tuyến của (G) tại A cắt trục hoành tại điểm B. Tính giá trị gần đúng của diện tích của tam giác OAB (chính xác đến hàng phần nghìn).

    Đề bài

    Giả sử đồ thị (G) của hàm số \(y = {{{{\left( {\sqrt 2 } \right)}^x}} \over {\ln 2}}\) cắt trục tung tại điểm A và tiếp tuyến của (G) tại A cắt trục hoành tại điểm B. Tính giá trị gần đúng của diện tích của tam giác OAB (chính xác đến hàng phần nghìn).

    Lời giải chi tiết

    Cho \(x = 0 \Rightarrow y = {1 \over {\ln 2}}\)

    Tọa độ điểm \(A\left( {0;{1 \over {\ln 2}}} \right)\).
    Vậy \(OA = {1 \over {\ln 2}}\)
    Ta có \(y' = {{{{\left( {\sqrt 2 } \right)}^x}.\ln \sqrt 2 } \over {\ln 2}} = {1 \over 2}{\left( {\sqrt 2 } \right)^x} \)

    \(\Rightarrow y'\left( 0 \right) = {1 \over 2}\)
    Phương trình tiếp tuyến tại A là: \(y - {1 \over {\ln 2}} = {1 \over 2}(x-0)\)

    \(\Rightarrow y = {1 \over 2}x + {1 \over {\ln 2}}\)
    Giao điểm B của tiếp tuyến với trục hoành:

    Cho \(y=0\) ta được: 

    \(\frac{1}{2}x + \frac{1}{{\ln 2}} = 0 \Leftrightarrow x =  - \frac{2}{{\ln 2}} \) \(\Rightarrow B\left( { - {2 \over {\ln 2}};0} \right)\) suy ra \(OB = {2 \over {\ln 2}}\)

    Vậy \({S_{OAB}} = {1 \over 2}OA.OB \) \(= {1 \over 2}.{1 \over {\ln 2}}.{2 \over {\ln 2}} = {1 \over {{{\ln }^2}2}} \approx 2,081\)

    Cách khác:

    Cho \(x = 0 \Rightarrow y = {1 \over {\ln 2}}\)

    Tọa độ điểm \(A\left( {0;{1 \over {\ln 2}}} \right)\).
    Vậy \(OA = {1 \over {\ln 2}}\)
    Ta có \(y' = {{{{\left( {\sqrt 2 } \right)}^x}.\ln \sqrt 2 } \over {\ln 2}} = {1 \over 2}{\left( {\sqrt 2 } \right)^x} \)

    Suy ra hệ số góc của tiếp tuyến của đồ thị (G) tại A là:

    \(y'\left( 0 \right) = \tan \widehat {OBA} = \frac{1}{2}\)

    Trong tam giác OAB, ta có:

    \(\frac{{OA}}{{OB}} = \tan \widehat {OBA} = \frac{1}{2}\) \( \Rightarrow OB = 2OA = \frac{2}{{\ln 2}}\)

    Do đó diện tích tam giác OAB là

    \({S_{OAB}} = \frac{1}{2}OA.OB  = \frac{1}{2}.\frac{1}{{\ln 2}}.\frac{2}{{\ln 2}}\) \(= \frac{1}{{{{\ln }^2}2}} \approx 2,081\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO