Bài 81 trang 129 SGK giải tích 12 nâng cao

Giải bất phương trình:

    Giải bất phương trình: 

    \(\eqalign{
    & a)\,{\log _5}\left( {3x - 1} \right) < 1\,; \cr 
    & b)\,{\log _{{1 \over 3}}}\left( {5x - 1} \right) > 0\,; \cr} \)

    \(\eqalign{
    & c)\,{\log _{0,5}}\left( {{x^2} - 5x + 6} \right) \ge - 1 \,; \cr 
    & d)\,{\log _3}{{1 - 2x} \over x} \le 0. \cr} \)

    LG a

    \({\log _5}\left( {3x - 1} \right) < 1\)

    Lời giải chi tiết:

    \(\eqalign{
    & a)\,{\log _5}\left( {3x - 1} \right) < 1 \cr&\Leftrightarrow {\log _5}\left( {3x - 1} \right) < {\log _5}5 \cr 
    & \Leftrightarrow 0 < 3x - 1 < 5\cr& \Leftrightarrow 1 < 3x < 6 \Leftrightarrow {1 \over 3} < x < 2 \cr} \) 

    Vậy \(S = \left( {{1 \over 3};2} \right)\)

    Cách trình bày khác:


    LG b

    \({\log _{{1 \over 3}}}\left( {5x - 1} \right) > 0\)

    Lời giải chi tiết:

    \(\eqalign{
    & b)\,{\log _{{1 \over 3}}}\left( {5x - 1} \right) > 0 \cr 
    & \Leftrightarrow {\log _{{1 \over 3}}}\left( {5x - 1} \right) > {\log _{{1 \over 3}}}1 \cr 
    &  \Leftrightarrow 0 < 5x - 1 < 1 \Leftrightarrow {1 \over 5} < x < {2 \over 5} \cr} \) 

    Vậy \(S = \left( {{1 \over 5};{2 \over 5}} \right)\)

    Cách trình bày khác:

    ĐK: \(5x - 1 > 0 \Leftrightarrow x > \frac{1}{5}\)

    BPT

    \(\begin{array}{l} \Leftrightarrow 5x - 1 < {\left( {\frac{1}{3}} \right)^0} = 1\\ \Leftrightarrow 5x < 2\\ \Leftrightarrow x < \frac{2}{5}\end{array}\)

    Kết hợp ĐK được \(\frac{1}{5} < x < \frac{2}{5}\)


    LG c

    \({\log _{0,5}}\left( {{x^2} - 5x + 6} \right) \ge - 1\)

    Lời giải chi tiết:

    \(\eqalign{
    & c)\,{\log _{0,5}}\left( {{x^2} - 5x + 6} \right) \ge - 1\cr 
    & \Leftrightarrow \,{\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 6} \right) \ge -1 \cr 
    & \Leftrightarrow 0 < {x^2} - 5x + 6 \le {\left( {\frac{1}{2}} \right)^{ - 1}} = 2 \cr&\Leftrightarrow \left\{ \matrix{
    {x^2} - 5x + 6 > 0 \hfill \cr 
    {x^2} - 5x + 4 \le 0 \hfill \cr} \right. \cr 
    & \Leftrightarrow \left\{ \matrix{
    x < 2\,\text { hoặc }\,x > 3 \hfill \cr 
    1 \le x \le 4 \hfill \cr} \right. \cr&\Leftrightarrow 1 \le x < 2\,\,\text { hoặc }\,\,3 < x \le 4 \cr} \) 

    Vậy tập nghiệm của bất phương trình là: \(S = \left[ {1;2} \right) \cup \left( {3;4} \right]\)

    Cách trình bày khác:

    ĐK:\({x^2} - 5x + 6 > 0 \Leftrightarrow \left[ \begin{array}{l}
    x > 3\\
    x < 2
    \end{array} \right.\)

    \(\begin{array}{l}
    BPT \Leftrightarrow {\log _{\frac{1}{2}}}\left( {{x^2} - 5x + 6} \right) \ge - 1\\
    \Leftrightarrow {x^2} - 5x + 6 \le {\left( {\frac{1}{2}} \right)^{ - 1}} = 2\\
    \Leftrightarrow {x^2} - 5x + 4 \le 0\\
    \Leftrightarrow 1 \le x \le 4
    \end{array}\)

    Kết hợp ĐK ta được \(1 \le x < 2\,\,\text { hoặc }\,\,3 < x \le 4\).


    LG d

    \({\log _3}{{1 - 2x} \over x} \le 0.\)

    Lời giải chi tiết:

    \(\eqalign{
    & d)\,{\log _3}{{1 - 2x} \over x} \le 0 \cr&\Leftrightarrow {\log _3}{{1 - 2x} \over x} \le {\log _3}1 \cr 
    & \Leftrightarrow 0 < {{1 - 2x} \over x} \le 1\cr& \Leftrightarrow \left\{ \matrix{
    {{1 - 2x} \over x} > 0 \hfill \cr 
    {{1 - 2x} \over x} - 1 \le 0 \hfill \cr} \right. \cr 
    & \Leftrightarrow \left\{ \matrix{
    0 < x < {1 \over 2} \hfill \cr 
    {{1 - 3x} \over x} \le 0 \hfill \cr} \right. \cr&\Leftrightarrow \left\{ \matrix{
    0 < x < {1 \over 2} \hfill \cr 
    x < 0\,\text { hoặc }\,x \ge {1 \over 3} \hfill \cr} \right. \cr 
    & \Leftrightarrow {1 \over 3} \le x < {1 \over 2} \cr} \)

    Vậy \(S = \left[ {{1 \over 3};{1 \over 2}} \right)\)

    Cách trình bày khác:

    ĐK: \(\frac{{1 - 2x}}{x} > 0 \Leftrightarrow 0 < x < \frac{1}{2}\)

    Khi đó,

    \(\begin{array}{l}
    BPT \Leftrightarrow \frac{{1 - 2x}}{x} \le {3^0} = 1\\
    \Leftrightarrow \frac{{1 - 2x}}{x} - 1 \le 0\\
    \Leftrightarrow \frac{{1 - 3x}}{x} \le 0\\
    \Leftrightarrow \left[ \begin{array}{l}
    x \ge \frac{1}{3}\\
    x < 0
    \end{array} \right.
    \end{array}\)

    Kết hợp ĐK ta được \({1 \over 3} \le x < {1 \over 2}\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO