Bài 6 trang 156 SGK Đại số và Giải tích 11

Viết phương trình tiếp tuyến của đường hypebol

    Viết phương trình tiếp tuyến của đường hypebol \(y =  \dfrac{1}{x}\):

    LG a

    Tại điểm \((  \dfrac{1}{2} ; 2)\)

    Phương pháp giải:

    Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

    Lời giải chi tiết:

    Xét giới hạn:

    \(\begin{array}{l}
    \,\,\,\,\,\mathop {\lim }\limits_{x \to {x_0}} \dfrac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x_0}}}}}{{x - {x_0}}}\\
    = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{{x_0} - x}}{{x.{x_0}\left( {x - {x_0}} \right)}} = \mathop {\lim }\limits_{x \to {x_0}} \dfrac{{ - 1}}{{x.{x_0}}} = - \dfrac{1}{{x_0^2}}\\
    \Rightarrow y'\left( {{x_0}} \right) = - \dfrac{1}{{x_0^2}}
    \end{array}\)

    Ta có: \(y'  \left ( \dfrac{1}{2} \right )= -4\).

    Vậy phương trình tiếp tuyến của hypebol tại điểm \((\dfrac{1}{2} ; 2)\) là \(y =  - 4\left( {x - \dfrac{1}{2}} \right) + 2 =  - 4x + 4\)


    LG b

    Tại điểm có hoành độ bằng \(-1\);

    Phương pháp giải:

    Phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\) là: \(y = f'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + f\left( {{x_0}} \right)\)

    Lời giải chi tiết:

    Ta có: \(y' (-1) = -1, y(-1)=-1\).

    Vậy phương trình tiếp tuyến tại điểm có hoành độ là \(-1\) là: \(y =  - \left( {x + 1} \right) - 1 =  - x - 2\).


    LG c

    Biết rằng hệ số góc của tiếp tuyến bằng \( -\dfrac{1}{4}\).

    Phương pháp giải:

    Hệ số góc của tiếp tuyến tại điểm có hoành độ \(x_0\) là \(f'\left( {{x_0}} \right) = 3\).

    Giải phương trình tìm \(x_0\), từ đó viết phương trình tiếp tuyến của đồ thị hàm số \(y = f\left( x \right)\) tại điểm có hoành độ \(x = {x_0}\).

    Lời giải chi tiết:

    Gọi \(x_0\) là hoành độ tiếp điểm. Ta có

    \(y' (x_0) = -  \dfrac{1}{4} \Leftrightarrow -  \dfrac{1}{x_{0}^{2}} = -  \dfrac{1}{4}\)\(\Leftrightarrow x_{0}^{2} = 4 \Leftrightarrow x_{0}=  ±2\).

    Với \(x_{0}= 2\) ta có \(y(2) =  \dfrac{1}{2}\), phương trình tiếp tuyến là \(y =  - \dfrac{1}{4}\left( {x - 2} \right) + \dfrac{1}{2} =  - \dfrac{1}{4}x + 1\).

    Với \(x_{0} = -2\) ta có \(y (-2) = - \dfrac{1}{2}\), phương trình tiếp tuyến là: \(y =  - \dfrac{1}{4}\left( {x + 2} \right) - \dfrac{1}{2} =  - \dfrac{1}{4}x - 1\).

    Chú ý: Trong các ý a, b, c đều sử dụng cách tính đạo hàm của hàm số tại điểm \(x=x_0\) bằng định nghĩa. Sau khi học xong bài 2 thì các em có thể quay lại làm lại bài tập này, việc tính đạo hàm sẽ dễ hơn rất nhiều.

    Xemloigiai.com

    SGK Toán lớp 11

    Giải bài tập toán lớp 11 như là cuốn để học tốt Toán lớp 11. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và giải tích, hình học SGK Toán lớp 11, giúp ôn luyện thi THPT Quốc gia. Giai toan 11 xem mục lục giai toan lop 11 sach giao khoa duoi day

    ĐẠI SỐ VÀ GIẢI TÍCH 11

    HÌNH HỌC 11

    CHƯƠNG I. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC

    CHƯƠNG II. TỔ HỢP - XÁC SUẤT

    CHƯƠNG III. DÃY SỐ, CẤP SỐ CỘNG VÀ CẤP SỐ NHÂN

    CHƯƠNG IV. GIỚI HẠN

    CHƯƠNG V. ĐẠO HÀM

    CHƯƠNG I. PHÉP DỜI HÌNH VÀ PHÉP ĐỒNG DẠNG TRONG MẶT PHẲNG

    CHƯƠNG II. ĐƯỜNG THẲNG VÀ MẶT PHẲNG TRONG KHÔNG GIAN. QUAN HỆ SONG SONG

    CHƯƠNG III. VECTƠ TRONG KHÔNG GIAN. QUAN HỆ VUÔNG GÓC TRONG KHÔNG GIAN

    Xem Thêm

    Lớp 11 | Các môn học Lớp 11 | Giải bài tập, đề kiểm tra, đề thi Lớp 11 chọn lọc

    Danh sách các môn học Lớp 11 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Tác giả & Tác phẩm