Bài 4.38 trang 208 SBT giải tích 12

Giải bài 4.38 trang 208 sách bài tập giải tích 12.Tìm số phức z, biết:...

    Tìm số phức \(z\), biết:

    LG a

    \(\overline z  = {z^3}\)

    Phương pháp giải:

    Nhân cả hai vế với \(z\) và đặt \(z = a + bi\), biến đổi phương trình suy ra \(a,b\).

    Lời giải chi tiết:

    Ta có \(z\overline z  = {\left| z \right|^2}\) nên từ \(\overline z  = {z^3} \Rightarrow {\left| z \right|^2} = {z^4}\)

    Đặt \(z  = a+ bi\), suy ra:

    \(\begin{array}{l}
    {a^2} + {b^2} = {\left( {a + bi} \right)^4} = {\left[ {{{\left( {a + bi} \right)}^2}} \right]^2}\\
    \Leftrightarrow {a^2} + {b^2} = {\left( {{a^2} - {b^2} + 2abi} \right)^2}\\
    \Leftrightarrow {a^2} + {b^2} = {a^4} + {b^4} + {\left( {2abi} \right)^2}\\
    - 2{a^2}{b^2} - 2{b^2}.2abi + 2{a^2}.2abi\\
    \Leftrightarrow {a^2} + {b^2} = {a^4} + {b^4} - 4{a^2}{b^2}\\
    - 2{a^2}{b^2} - 4a{b^3}bi + 4{a^3}bi\\
    \Leftrightarrow {a^2} + {b^2} = {a^4} + {b^4} - 6{a^2}{b^2}\\
    + 4{a^2}{b^2}\left( {{a^2} - {b^2}} \right)i\\
    \Leftrightarrow {a^4} + {b^4} - 6{a^2}{b^2} - {a^2} - {b^2}\\
    + 4{a^2}{b^2}\left( {{a^2} - {b^2}} \right)i = 0\\
    \Leftrightarrow \left\{ \begin{array}{l}
    4{a^2}{b^2}\left( {{a^2} - {b^2}} \right) = 0\,\,\left( 1 \right)\\
    {a^4} + {b^4} - 6{a^2}{b^2} - {a^2} - {b^2} = 0\,\,\left( 2 \right)
    \end{array} \right.
    \end{array}\)

    \(\left( 1 \right) \Leftrightarrow \left[ \begin{array}{l}
    {a^2} = 0\\
    {b^2} = 0\\
    {a^2} - {b^2} = 0
    \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
    a = 0\\
    b = 0\\
    {a^2} = {b^2}
    \end{array} \right.\)

    +) Nếu \(a = 0\) thay vào \(\left( 2 \right)\) được \({b^4} - {b^2} = 0 \Leftrightarrow {b^2}\left( {{b^2} - 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}{b^2} = 0\\{b^2} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}b = 0\\b =  \pm 1\end{array} \right.\)

    \( \Rightarrow \left[ \begin{array}{l}z = 0\\z = i\\z =  - i\end{array} \right.\)

    +) Nếu \(b = 0\) thay vào \(\left( 2 \right)\) ta được \({a^4} - {a^2} = 0 \Leftrightarrow {a^2}\left( {{a^2} - 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}{a^2} = 0\\{a^2} = 1\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}a = 0\\a =  \pm 1\end{array} \right.\)

    \( \Rightarrow \left[ \begin{array}{l}z = 0\\z =  \pm 1\end{array} \right.\)

    +) Nếu \({a^2} = {b^2}\) thay vào \(\left( 2 \right)\) ta được:

    \({a^4} + {a^4} - 6{a^4} - {a^2} - {a^2} = 0\)\( \Leftrightarrow  - 4{a^4} - 2{a^2} = 0\)  \( \Leftrightarrow  - 2{a^2}\left( {2{a^2} + 1} \right) = 0\)\( \Leftrightarrow {a^2} = 0 \Leftrightarrow a = 0\)

    (vì \(2{a^2} + 1 > 0,\forall a\) )

    \( \Rightarrow b = a = 0 \Rightarrow z = 0\)

    Vậy các số phức cần tìm là \(z = 0,z =  \pm 1,z =  \pm i\).


    LG b

    \(|z| + z = 3 + 4i\)

    Phương pháp giải:

    Đặt \(z = a + bi\) thay vào điều kiện bài cho tìm \(a,b\) và kết luận.

    Lời giải chi tiết:

    Đặt \(z = a + bi\). Từ \(\left| z \right| + z = 3 + 4i\;\)suy ra

    \(\sqrt {{a^2} + {b^2}}  + a + bi = 3 + 4i\)

    \( \Leftrightarrow \sqrt {{a^2} + {b^2}}  + a - 3 + \left( {b - 4} \right)i = 0\) \( \Leftrightarrow \left\{ \begin{array}{l}\sqrt {{a^2} + {b^2}}  + a - 3 = 0\\b - 4 = 0\end{array} \right.\)

    Ta có: \(b - 4 = 0 \Leftrightarrow b = 4\) thay vào phương trình trên ta được:

    \(\sqrt {{a^2} + 16}  + a - 3 = 0\) \( \Leftrightarrow \sqrt {{a^2} + 16}  = 3 - a\)\( \Leftrightarrow \left\{ \begin{array}{l}3 - a \ge 0\\{a^2} + 16 = 9 - 6a + {a^2}\end{array} \right.\)  \( \Leftrightarrow \left\{ \begin{array}{l}a \le 3\\6a + 7 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a \le 3\\a =  - \dfrac{7}{6}\end{array} \right.\) \( \Leftrightarrow a =  - \dfrac{7}{6}\)

    \( \Rightarrow z =  - \dfrac{7}{6} + 4i\)

    Vậy \(z =  - \dfrac{7}{6} + 4i\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12