Bài 41 trang 129 SGK Toán 9 tập 2

a) Chứng minh AOC và BDO là hai tam giác đồng dạng; từ đó suy ra tích AC.BD không đổi.

    Đề bài

    Cho ba điểm \(A, O, B\) thẳng hàng theo thứ tự đó, \(OA = a, OB = b\) (\(a,b\) cùng đơn vị: cm).

    Qua \(A\) và \(B\) vẽ theo thứ tự các tia \(Ax\) và \(By\) cùng vuông góc với \(AB\) và cùng phía với \(AB\). Qua \(O\) vẽ hai tia vuông gaóc với nhau và cắt \(Ax\) ở \(C\), \(By\) ở \(D\) (xem hình 116).

    a) Chứng minh \(AOC\) và \(BDO\) là hai tam giác đồng dạng; từ đó suy ra tích \(AC.BD\) không đổi.

    b) Tính diện tích hình thang \(ABDC\) khi \(\widehat {COA} = {60^0}\) 

    c) Với \(\widehat {COA} = {60^0}\) cho hình vẽ quay xung quanh \(AB\). Hãy tính tỉ số tích các hình do các tam giác \(AOC\) và \(BOD\) tạo thành

    Phương pháp giải - Xem chi tiết

    a) Hai tam giác có hai cặp góc tương ứng bằng nhau thì hai tam giác đó đồng dạng.

    b) Công thức tính diện tích hình thang có đáy lớn là \(a,\) đáy nhỏ là \(b\) và chiều cao \(h\) là: \(S = \dfrac{{\left( {a + b} \right)h}}{2}.\) 

    c) Thể tích hình nón: \( V = \dfrac{1}{3}\pi {r^2}h.\)

    Lời giải chi tiết

    a) Xét hai tam giác vuông \(AOC\) và \(BDO\) ta có: \(\widehat A = \widehat B = {90^0}\) 

     \(\widehat {AOC} = \widehat {B{\rm{D}}O}\) (cùng phụ với \(\widehat{BOD}\)).

    Vậy \(∆AOC\) đồng dạng \(∆BDO \, \, (g-g).\) 

    \( \displaystyle \Rightarrow {{AC} \over {AO}} = {{BO} \over {B{\rm{D}}}}\) (2 cặp cạnh tương ứng tỉ lệ) \( \displaystyle\Rightarrow {{AC} \over a} = {b \over {B{\rm{D}}}}\) (1)

    Vậy \(AC . BD = a . b \) không đổi.

    b) Khi \(\widehat {COA} = 60^\circ \) , xét tam giác vuông \(ACO\) ta có \(\tan \widehat {AOC} = \dfrac{{AC}}{{OA}} \Rightarrow \tan 60^\circ  = \dfrac{{AC}}{a} \Rightarrow AC = a\sqrt 3 \)

    mà \(AC.BD = ab\) (câu a) nên \(a\sqrt 3 .BD = ab \Rightarrow BD = \dfrac{{b\sqrt 3 }}{3}\)

    Ta có công thức tính diện tích hình thang \(ABCD\) là: 

    \(\eqalign{
    & S = {{AC + B{\rm{D}}} \over 2}.AB = \displaystyle {{a\sqrt 3 + {{b\sqrt 3 } \over 3}} \over 2}.\left( {a + b} \right) \cr
    & = {{\sqrt 3 } \over 6}\left( {3{{\rm{a}}^2} + 4{\rm{a}}b + {b^2}} \right)\left( {c{m^2}} \right) \cr} \)

    c) Theo đề bài ta có:

    Tam giác \(AOC\) khi quay quanh cạnh \(AB\) tạo thành hình nón có chiều cao \(OA = a\) và bán kính đáy \(AC = a\sqrt 3 \)  nên thể tích hình nón là \({V_1} = \dfrac{1}{3}\pi .OA.A{C^2} = \dfrac{1}{3}\pi .a.{\left( {a\sqrt 3 } \right)^2} = \pi {a^3}\left( {c{m^3}} \right)\)

    Tam giác \(BOD\) khi quay quanh cạnh \(AB\) tạo thành hình nón có chiều cao \(OB = b\) và bán kính đáy \(BD = \dfrac{{b\sqrt 3 }}{3}\)  nên thể tích hình nón là \({V_2} = \dfrac{1}{3}\pi .OB.B{D^2} = \dfrac{1}{3}\pi .b.{\left( {\dfrac{{b\sqrt 3 }}{3}} \right)^2} = \dfrac{{\pi {b^3}}}{9}\left( {c{m^3}} \right)\)

    Do đó \(\dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\pi {a^3}}}{{\dfrac{{\pi {b^3}}}{9}}} = \dfrac{{9{a^3}}}{{{b^3}}}\)

    Xemloigiai.com

    SGK Toán lớp 9

    Giải bài tập toán lớp 9 như là cuốn để học tốt Toán lớp 9. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 9 giúp luyện thi vào 10 hiệu quả. Giai toan 9 xem mục lục giai toan lop 9 sach giao khoa duoi day

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

    CHƯƠNG I. CĂN BẬC HAI. CĂN BẬC BA

    CHƯƠNG II. HÀM SỐ BẬC NHẤT

    CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG II. ĐƯỜNG TRÒN

    CHƯƠNG III. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG IV. HÀM SỐ y = ax^2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

    CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN

    CHƯƠNG IV. HÌNH TRỤ - HÌNH NÓN - HÌNH CẦU

    BÀI TẬP ÔN CUỐI NĂM - TOÁN 9

    Xem Thêm

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật