Bài 3.7 trang 164 SBT giải tích 12

Giải bài 3.7 trang 164 sách bài tập giải tích 12. Bằng cách biến đổi các hàm số lượng giác, hãy tính:...

    Bằng cách biến đổi các hàm số lượng giác, hãy tính:

    LG câu a

    a) \(\int {{{\sin }^4}x} dx\)                 

    Phương pháp giải:

    Hạ bậc đưa về dạng tổng rồi tính nguyên hàm, sử dụng công thức nguyên hàm hàm số cơ bản \(\int {\cos kxdx}  = \dfrac{{\sin kx}}{k} + C\).

    Lời giải chi tiết:

    Ta có: \({\sin ^4}x = \dfrac{{{{\left( {1 - \cos 2x} \right)}^2}}}{4}\)\( = \dfrac{1}{4}\left( {1 - 2\cos 2x + {{\cos }^2}2x} \right)\)

    \( = \dfrac{1}{4}\left( {1 - 2\cos 2x + \dfrac{{1 + \cos 4x}}{2}} \right)\) \( = \dfrac{1}{4}\left( {\dfrac{3}{2} - 2\cos 2x + \dfrac{1}{2}\cos 4x} \right)\)

    Khi đó \(\int {{{\sin }^4}x} dx\)\( = \int {\dfrac{1}{4}\left( {\dfrac{3}{2} - 2\cos 2x + \dfrac{1}{2}\cos 4x} \right)dx} \) \( = \int {\left( {\dfrac{3}{8} - \dfrac{1}{2}\cos 2x + \dfrac{1}{8}\cos 4x} \right)dx} \)

    \( = \dfrac{3}{8}x - \dfrac{1}{2}.\dfrac{{\sin 2x}}{2} + \dfrac{1}{8}.\dfrac{{\sin 4x}}{4} + C\) \( = \dfrac{3}{8}x - \dfrac{{\sin 2x}}{4} + \dfrac{{\sin 4x}}{{32}} + C\)


    LG câu b

    b) \(\int {\dfrac{1}{{{{\sin }^3}x}}dx} \)

    Phương pháp giải:

    Nhân cả tử và mẫu của biểu thức dưới dấu nguyên hàm với \(\sin x\) rồi đổi biến \(t = \cos x\) để tìm nguyên hàm.

    Lời giải chi tiết:

    Ta có: \(\int {\dfrac{1}{{{{\sin }^3}x}}dx} \)\( = \int {\dfrac{{\sin x}}{{{{\sin }^4}x}}dx} \) \( = \int {\dfrac{{\sin x}}{{{{\left( {1 - {{\cos }^2}x} \right)}^2}}}dx} \)

    Đặt \(t = \cos x \Rightarrow dt =  - \sin xdx\) ta có:


    LG câu c

    c) \(\int {{{\sin }^3}x{{\cos }^4}xdx} \)

    Phương pháp giải:

    Đổi biến \(u = \cos x\) tính nguyên hàm.

    Lời giải chi tiết:

    \(\int {{{\sin }^3}x{{\cos }^4}xdx} \)

    Đặt \(t = \cos x \Rightarrow dt =  - \sin xdx\).

    Khi đó \(\int {{{\sin }^3}x{{\cos }^4}xdx} \)\( = \int {{{\sin }^2}x.{{\cos }^4}x.\sin xdx} \) \( = \int {\left( {1 - {t^2}} \right).{t^4}.\left( { - dt} \right)} \)

    \( = \int {\left( { - {t^4} + {t^6}} \right)dt} \) \( =  - \dfrac{{{t^5}}}{5} + \dfrac{{{t^7}}}{7} + C\) \( =  - \dfrac{{{{\cos }^5}x}}{5} + \dfrac{{{{\cos }^7}x}}{7} + C\).


    LG câu d

    d) \(\int {{{\sin }^4}x{{\cos }^4}xdx} \)

    Phương pháp giải:

    Hạ bậc (sử dụng công thức nhân đôi) và tính nguyên hàm.

    Lời giải chi tiết:

    Ta có: \({\sin ^4}x{\cos ^4}x\)\( = {\left( {\dfrac{1}{2}\sin 2x} \right)^4} = \dfrac{1}{{{2^4}}}{\sin ^4}2x\) \( = \dfrac{1}{{16}}{\left( {{{\sin }^2}2x} \right)^2} = \dfrac{1}{{16}}.{\left[ {\dfrac{{1 - \cos 4x}}{2}} \right]^2}\)

    \( = \dfrac{1}{{64}}{\left( {1 - \cos 4x} \right)^2}\) \( = \dfrac{1}{{64}}\left( {1 - 2\cos 4x + {{\cos }^2}4x} \right)\) \( = \dfrac{1}{{64}} - \dfrac{1}{{32}}\cos 4x + \dfrac{1}{{64}}.\dfrac{{1 + \cos 8x}}{2}\)

    \( = \dfrac{3}{{128}} - \dfrac{1}{{32}}\cos 4x + \dfrac{1}{{128}}\cos 8x\)

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12