Bài 3.6 trang 164 SBT giải tích 12

Giải bài 3.6 trang 164 SBT giải tích 12. Tính các nguyên hàm sau:...

    Tính các nguyên hàm sau:

    LG câu a

    a) \(\int {x{{(3 - x)}^5}dx} \)

    Phương pháp giải:

    Đổi biến \(t = 3 - x\).

    Giải chi tiết:

    Đặt \(t = 3 - x \Rightarrow dt =  - dx\).

    Khi đó \(\int {x{{(3 - x)}^5}dx} \) \( = \int {\left( {3 - t} \right).{t^5}.\left( { - dt} \right)} \) \( = \int {\left( { - 3{t^5} + {t^6}} \right)dt} \) \( =  - 3.\dfrac{{{t^6}}}{6} + \dfrac{{{t^7}}}{7} + C\) \( = \dfrac{{ - {{\left( {3 - x} \right)}^6}}}{2} + \dfrac{{{{\left( {3 - x} \right)}^7}}}{7} + C\)


    LG câu b

    b) \(\int {{{({2^x} - {3^x})}^2}} dx\)

    Phương pháp giải:

    Sử dụng công thức nguyên hàm cơ bản \(\int {{a^x}dx}  = \dfrac{{{a^x}}}{{\ln a}} + C\).

    Giải chi tiết:

    Ta có: \(\int {{{({2^x} - {3^x})}^2}} dx\)\( = \int {\left( {{2^{2x}} + {3^{2x}} - {{2.2}^x}{{.3}^x}} \right)dx} \) \( = \int {{2^{2x}}dx}  + \int {{3^{2x}}dx}  - 2\int {{6^x}dx} \) \( = \int {{4^x}dx}  + \int {{9^x}dx}  - 2.\int {{6^x}dx} \) \( = \dfrac{{{4^x}}}{{\ln 4}} + \dfrac{{{9^x}}}{{\ln 9}} - 2.\dfrac{{{6^x}}}{{\ln 6}} + C\).


    LG câu c

    c) \(\int {x\sqrt {2 - 5x} dx} \)

    Phương pháp giải:

    Đổi biến \(t = \sqrt {2 - 5x} \).

    Giải chi tiết:

    Đặt \(t = \sqrt {2 - 5x}  \Rightarrow {t^2} = 2 - 5x\) \( \Rightarrow 2tdt =  - 5dx \Rightarrow dx =  - \dfrac{{2tdt}}{5}\)

    Khi đó \(\int {x\sqrt {2 - 5x} dx} \) \( = \int {\dfrac{{2 - {t^2}}}{5}.t.\left( {\dfrac{{ - 2tdt}}{5}} \right)} \) \( =  - \dfrac{2}{{25}}\int {\left( {2{t^2} - {t^4}} \right)dt} \) \( =  - \dfrac{2}{{25}}\left( {\dfrac{2}{3}{t^3} - \dfrac{{{t^5}}}{5}} \right) + C\)

    \( =  - \dfrac{4}{{75}}{\left( {\sqrt {2 - 5x} } \right)^3} + \dfrac{2}{{125}}{\left( {\sqrt {2 - 5x} } \right)^5} + C\)


    LG câu d

    d) \(\int {\dfrac{{\ln (\cos x)}}{{{{\cos }^2}x}}} dx\)

    Phương pháp giải:

    Đặt \(u = \ln (\cos x),dv = \dfrac{{dx}}{{{{\cos }^2}x}}\) và sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

    Giải chi tiết:

    Đặt \(u = \ln (\cos x),dv = \dfrac{{dx}}{{{{\cos }^2}x}}\) suy ra \(\left\{ \begin{array}{l}du = \dfrac{{ - \sin x}}{{\cos x}} =  - \tan x\\v = \tan x\end{array} \right.\)

    Khi đó \(\int {\dfrac{{\ln (\cos x)}}{{{{\cos }^2}x}}} dx\)\( = \tan x\ln \left( {\cos x} \right) + \int {{{\tan }^2}xdx} \)

    \( = \tan x\ln \left( {\cos x} \right) + \int {\left( {{{\tan }^2}x + 1 - 1} \right)dx} \) \( = \tan x\ln \left( {\cos x} \right) + \int {\left( {{{\tan }^2}x + 1} \right)dx}  + \int {dx} \)

    \( = \tan x\ln \left( {\cos x} \right) + \tan x - x + C\) \( = \tan x\left[ {\ln \left( {\cos x} \right) + 1} \right] - x + C\)


    LG câu e

    e) \(\int {\dfrac{x}{{{{\sin }^2}x}}} dx\)

    Phương pháp giải:

    Đặt \(u = x,dv = \dfrac{{dx}}{{{{\sin }^2}x}}\) và sử dụng công thức nguyên hàm từng phần \(\int {udv}  = uv - \int {vdu} \).

    Giải chi tiết:

    Đặt \(u = x,dv = \dfrac{{dx}}{{{{\sin }^2}x}}\)\( \Rightarrow \left\{ \begin{array}{l}du = dx\\v =  - \cot x\end{array} \right.\)

    Khi đó \(\int {\dfrac{x}{{{{\sin }^2}x}}} dx\)\( =  - x\cot x + \int {\cot xdx} \) \( =  - x\cot x + \int {\dfrac{{\cos x}}{{\sin x}}dx} \) \( =  - x\cot x + \int {\dfrac{{d\left( {\sin x} \right)}}{{\sin x}}} \)

    \( =  - x\cot x + \ln \left| {\sin x} \right| + C\)


    LG câu g

    g) \(\int {\dfrac{{x + 1}}{{(x - 2)(x + 3)}}dx} \)

    Phương pháp giải:

    Tách \(\dfrac{{x + 1}}{{(x - 2)(x + 3)}} = \dfrac{3}{{5(x - 2)}} + \dfrac{2}{{5(x + 3)}}\) và tính nguyên hàm theo công thức \(\int {\dfrac{1}{{ax + b}}dx}  = \dfrac{{\ln \left| {ax + b} \right|}}{a} + C\).

    Giải chi tiết:

    Ta có  \(\dfrac{{x + 1}}{{(x - 2)(x + 3)}} = \dfrac{3}{{5(x - 2)}} + \dfrac{2}{{5(x + 3)}}\)

    Khi đó \(\int {\dfrac{{x + 1}}{{(x - 2)(x + 3)}}dx} \)\( = \int {\left( {\dfrac{3}{{5(x - 2)}} + \dfrac{2}{{5(x + 3)}}} \right)dx} \) \( = \dfrac{3}{5}\int {\dfrac{{dx}}{{x - 2}}}  + \dfrac{2}{5}\int {\dfrac{{dx}}{{x + 3}}} \)

    \( = \dfrac{3}{5}\ln \left| {x - 2} \right| + \dfrac{2}{5}\ln \left| {x + 3} \right| + C\) \( = \dfrac{1}{5}\left[ {\ln {{\left| {x - 2} \right|}^3}{{\left( {x + 3} \right)}^2}} \right] + C\)


    LG câu h

    h) \(\int {\dfrac{1}{{1 - \sqrt x }}} dx\)

    Phương pháp giải:

    Đổi biến đặt \(t = \sqrt x \).

    Giải chi tiết:

    Đặt \(t = \sqrt x  \Rightarrow x = {t^2} \Rightarrow dx = 2tdt\).

    Khi đó \(\int {\dfrac{1}{{1 - \sqrt x }}} dx\)\( = \int {\dfrac{1}{{1 - t}}.2tdt}  = \int {\left( { - 2 + \dfrac{2}{{1 - t}}} \right)dx} \)

    \( =  - 2t - 2\ln \left| {1 - t} \right| + C\) \( =  - 2\sqrt x  - 2\ln \left| {1 - \sqrt x } \right| + C\)


    LG câu i

    i) \(\int {\sin 3x\cos 2xdx} \)

    Phương pháp giải:

    Khai triển \(\sin 3x.\cos 2x = \dfrac{1}{2}\left( {\sin x + \sin 5x} \right)\) và tính nguyên hàm.

    Giải chi tiết:

    Ta có: \(\sin 3x.\cos 2x = \dfrac{1}{2}\left( {\sin x + \sin 5x} \right)\).

    Khi đó \(\int {\sin 3x\cos 2xdx} \)\( = \dfrac{1}{2}\int {\left( {\sin x + \sin 5x} \right)dx} \)

    \( = \dfrac{1}{2}\left( { - \cos x - \dfrac{{\cos 5x}}{5}} \right) + C\)\( =  - \dfrac{1}{2}\left( {\cos x + \dfrac{1}{5}\cos 5x} \right) + C\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12