Bài 37 trang 11 SBT toán 8 tập 2

Giải bài 37 trang 11 sách bài tập toán 8. Các khẳng định sau đây đúng hay sai : ...

    Đề bài

    Các khẳng định sau đây đúng hay sai: 

    a) Phương trình \(\displaystyle{{4x - 8 + \left( {4 - 2x} \right)} \over {{x^2} + 1}} = 0\) có nghiệm là \(x = 2\).

    b) Phương trình \(\displaystyle{{\left( {x + 2} \right)\left( {2x - 1} \right) - x - 2} \over {{x^2} - x + 1}} = 0\) có tập nghiệm là \(S = \{ -2; 1 \}\).

    c) Phương trình \(\displaystyle{{{x^2} + 2x + 1} \over {x + 1}} = 0\) có nghiệm là \(x = -1\).

    d) Phương trình \(\displaystyle{{{x^2}\left( {x - 3} \right)} \over x} = 0\) có tập nghiệm là \(S = \{ 0; 3 \}\).

    Phương pháp giải - Xem chi tiết

    Giải phương trình chứa ẩn ở mẫu

    Bước 1: Tìm điều kiện xác của phương trình.

    Bước 2: Quy đồng mẫu hai vế của phương trình rồi khử mẫu.

    Bước 3: Giải phương trình vừa nhận được.

    Bước 4: Kết luận.

    Trong các giá trị của ẩn tìm được ở bước 3, các giá trị thỏa mãn điều kiện xác định chính là các nghiệm của phương trình đã cho.

    Lời giải chi tiết

    a) Vì \(\displaystyle{x^2} + 1 > 0\) với mọi \(x\) nên phương trình đã cho tương đương với phương trình :

    \(\displaystyle4x - 8 + \left( {4 - 2x} \right) = 0 \)

    \(\displaystyle\Leftrightarrow 2x - 4 = 0 \Leftrightarrow 2x = 4 \Leftrightarrow x = 2\).

    Vậy khẳng định đã cho là đúng.

    b) Vì \(\displaystyle{x^2} - x + 1 =x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)\(\displaystyle = {\left( {x - {1 \over 2}} \right)^2} + {3 \over 4} > 0\) với mọi \(x\) nên phương trình đã cho tương đương với phương trình:

    \(\displaystyle\left( {x + 2} \right)\left( {2x - 1} \right) - x - 2 = 0 \)

    \(\displaystyle \Leftrightarrow \left( {x + 2} \right)\left( {2x - 1} \right) - (x + 2) = 0 \)

    \(\displaystyle \Leftrightarrow \left( {x + 2} \right)\left( {2x - 2} \right)=0\)

    \(\displaystyle \Leftrightarrow x + 2 = 0\) hoặc \(\displaystyle 2x - 2 = 0\)

    \(\displaystyle \Leftrightarrow x =  - 2\) hoặc \(\displaystyle 2x = 2\)

    \(\displaystyle \Leftrightarrow x =  - 2\) hoặc \(\displaystyle x = 1\)

    Vậy khẳng định đã cho là đúng.

    c) Điều kiện xác định của phương trình là \(\displaystyle x + 1 \ne 0\) \(\displaystyle \Leftrightarrow x \ne  - 1\)

    Do vậy phương trình \(\displaystyle{{{x^2} + 2x + 1} \over {x + 1}} = 0\) không thể có nghiệm \(\displaystyle x = -1\).

    Vậy khẳng định đã cho là sai.

    d) Điều kiện xác định của phương trình là \(\displaystyle x \ne 0\).

    Do vậy \(x = 0\) không phải là nghiệm của phương trình \(\displaystyle{{{x^2}\left( {x - 3} \right)} \over x} = 0\).

    Vậy khẳng định đã cho là sai.

     

    Xemloigiai.com

    SBT Toán lớp 8

    Giải sách bài tập đại số, hình học lớp 8 tập 1, tập 2. Giải tất cả các chương và các trang trong sách bài tập đại số và hình học với lời giải chi tiết, phương pháp giải ngắn nhất

    PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 1

    PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 1

    PHẦN ĐẠI SỐ - SBT TOÁN 8 TẬP 2

    PHẦN HÌNH HỌC - SBT TOÁN 8 TẬP 2

    CHƯƠNG 1: PHÉP NHÂN VÀ PHÉP CHIA CÁC ĐA THỨC

    CHƯƠNG 2: PHÂN THỨC ĐẠI SỐ

    CHƯƠNG 1: TỨ GIÁC

    CHƯƠNG 2: ĐA GIÁC - DIỆN TÍCH ĐA GIÁC

    CHƯƠNG 3: PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG 4: BẤT PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN

    CHƯƠNG 3: TAM GIÁC ĐỒNG DẠNG

    CHƯƠNG 4: HÌNH LĂNG TRỤ ĐỨNG. HÌNH CHÓP ĐỀU

    ÔN TẬP CUỐI NĂM

    Lớp 8 | Các môn học Lớp 8 | Giải bài tập, đề kiểm tra, đề thi Lớp 8 chọn lọc

    Danh sách các môn học Lớp 8 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật