Bài 2.9 trang 104 SBT giải tích 12

Giải bài 2.9 trang 104 sách bài tập giải tích 12. Vẽ đồ thị của hai hàm số sau trên cùng một hệ trục tọa độ:...

    Đề bài

    Vẽ đồ thị của các hàm số \(y = {x^2}\)  và \(y = {x^{\frac{1}{2}}}\) trên cùng một hệ trục tọa độ. Hãy so sánh giá trị của các hàm số đó khi \(x = 0,5;1;\dfrac{3}{2};2;3;4.\)

    Phương pháp giải - Xem chi tiết

    - Vẽ đồ thị các hàm số đã cho dựa vào kiến thức đã học về hàm số bậc hai và hàm số lũy thừa.

    - So sánh giá trị của hai hàm số tại các điểm \(x = {x_i}\) bằng cách dựng đường thẳng \(x = {x_i}\) và nhận xét vị trí các điểm giao trên hình vẽ.

    Lời giải chi tiết

    Đặt \(f(x) = {x^2},x \in R\);\(g(x) = {x^{\frac{1}{2}}},x > 0\)

    Vẽ đồ thị hai hàm số ta được:

    Từ đồ thị của hai hàm số ta thấy:

    +) \(f(0,5) < g(0,5)\);

    +) \(f(1) = g(1) = 1\);

    +) \(f\left( {\dfrac{3}{2}} \right) > g\left( {\dfrac{3}{2}} \right)\);

    +) \(f(2) > g(2)\);

    +) \(f(3) > g(3)\);

    +) \(f(4) > g(4)\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12