Bài 1.55 trang 25 SBT giải tích 12

Giải bài 1.55 trang 25 sách bài tập giải tích 12. Đồ thị hàm số nào sau đây có hai tiệm cận tạo với hai trục tọa độ một tứ giác có diện tích bằng 12?

    Đề bài

    Đồ thị hàm số nào sau đây có hai tiệm cận tạo với hai trục tọa độ một tứ giác có diện tích bằng \(12\)?

    A. \(y = \dfrac{{3x + 2}}{{x - 2}}\)              B. \(y = \dfrac{{2x - 3}}{{1 - x}}\)

    C. \(y = \dfrac{{x - 2}}{{x + 5}}\)                D. \(y = \dfrac{{3x + 7}}{{x - 4}}\)

    Phương pháp giải - Xem chi tiết

    - Tìm các đường tiệm cận của mỗi đò thị hàm số, sử dụng lý thuyết:

    Đồ thị hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\left( {ad - bc \ne 0} \right)\) có TCĐ \(x =  - \dfrac{d}{c}\) và TCN \(y = \dfrac{a}{c}\).

    - Tính diện tích hình chữ nhật tạo thành và kết luận.

    Lời giải chi tiết

    Đáp án A: Đồ thị hàm số \(y = \dfrac{{3x + 2}}{{x - 2}}\) có đường TCĐ \(x = 2\) và TCN \(y = 3\).

    Diện tích hình chữ nhật tạo thành là: \(2.3 = 6\). Đáp án A sai.

    Đáp án B: Đồ thị hàm số \(y = \dfrac{{2x - 3}}{{1 - x}}\) có đường TCĐ \(x = 1\) và TCN \(y =  - 2\).

    Diện tích hình chữ nhật tạo thành là: \(2.1 = 2\). Đáp án B sai.

    Đáp án C: Đồ thị hàm số \(y = \dfrac{{x - 2}}{{x + 5}}\) có đường TCĐ \(x =  - 5\) và TCN \(y = 1\).

    Diện tích hình chữ nhật tạo thành là: \(5.1 = 5\). Đáp án C sai.

    Đáp án D: Đồ thị hàm số \(y = \dfrac{{3x + 7}}{{x - 4}}\) có đường TCĐ \(x = 4\) và TCN \(y = 3\).

    Diện tích hình chữ nhật tạo thành là: \(4.3 = 12\). Đáp án D đúng.

    Chọn D.

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12