Bài 8 trang 45 SGK Hình học 12 Nâng cao

Cho tứ diện ABCD với AB = CD = c, AC = BD = b, AD = BC = a. a) Tính diện tích mặt cầu ngoại tiếp tứ diện. b) Chứng minh rằng có một mặt cầu tiếp xúc với bốn mặt của hình tứ diện (nó được gọi là mặt cầu nội tiếp tứ diện)

    Cho tứ diện ABCD với AB = CD = c, AC = BD = b, AD = BC = a.

    LG a

    Tính diện tích mặt cầu ngoại tiếp tứ diện.

    Lời giải chi tiết:

    Gọi I và J lần lượt là trung điểm của AB và CD.

    Ta có \(\Delta ABC = \Delta BAD\,\,\left( {c.c.c} \right) \) \(\Rightarrow CI = DI\)(2 trung tuyến tương ứng)

    \(\Delta CID\) cân tại I nên \(IJ \bot CD\).

    Do ∆CAD = ∆DBC (c.c.c) nên AJ = BJ hay tam giác ABJ cân tại J.

    Lại có CJ là đường trung tuyến nên đồng thời là đường cao.

    ⇒ IJ ⊥ AB

    Gọi O là trung điểm của IJ thì OA = OB và OC = OD.

    Vì AB = CD = c nên hai tam giác vuông OIB và OJC bằng nhau, do đó OB = OC.

    Vậy O cách đều bốn đỉnh A, B, C, D.

    Mặt cầu ngoại tiếp tứ diện ABCD có tâm R = OA.

    Ta có: \(O{A^2} = O{I^2} + A{I^2} \) \(= {{I{J^2}} \over 4} + {{A{B^2}} \over 4} \) \(= {{I{J^2} + {c^2}} \over 4}\)

    Vì CI là trung tuyến của tam giác ABC nên \(C{I^2} = {{2{a^2} + 2{b^2} - {c^2}} \over 4}\)

    Suy ra \(I{J^2} = C{I^2} - C{J^2} \) \(= {{2{a^2} + 2{b^2} - {c^2}} \over 4} - {{{c^2}} \over 4} = {{{a^2} + {b^2} - {c^2}} \over 2}\)

    Như vậy \({R^2} = O{A^2} = {{{a^2} + {b^2} + {c^2}} \over 8}\) và diện tích mặt cầu ngoại tiếp tứ diện ABCD là:

    \(S = 4\pi {R^2} = {\pi  \over 2}\left( {{a^2} + {b^2} + {c^2}} \right)\)


    LG b

    Chứng minh rằng có một mặt cầu tiếp xúc với bốn mặt của hình tứ diện (nó được gọi là mặt cầu nội tiếp tứ diện)

    Lời giải chi tiết:

    Các mặt của hình tứ diện là các tam giác bằng nhau (đều có ba cạnh bằng a, b, c) nên các đường tròn ngoại tiếp các tam giác đó có bán kính r bằng nhau.

    Các đường tròn đó đều nằm trên mặt cầu tâm (O;R) nên khoảng cách từ tâm O tới các mặt phẳng chứa các đường tròn đó bằng nhau và bằng \(h = \sqrt {{R^2} - {r^2}} \).

    Vậy mặt cầu tâm O, bán kính h là mặt cầu nội tiếp tứ diện ABCD.

    (OA = R, OH = h, HA = r)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO