Bài 9 trang 15 SGK Hình học 12 Nâng cao

Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.

    Đề bài

    Chứng minh rằng các phép tịnh tiến, đối xứng trục, đối xứng tâm là những phép dời hình.

    Lời giải chi tiết

    * Phép tịnh tiến

     

    Giả sử \({T_{\overrightarrow v }}\) là phép tịnh tiến theo vectơ \(\overrightarrow v \)

    \(\eqalign{
    & {T_{\overrightarrow v }}:\,M \to M' \cr 
    & \,\,\,\,\,\,\,\,N \to N' \cr} \)

    Ta có \(\overrightarrow {MM'}  = \overrightarrow {NN'}  = \overrightarrow v\) nên MM'N'N là hình bình hành

    \(  \Rightarrow \overrightarrow {MN}  = \overrightarrow {M'N'}  \Rightarrow MN = M'N'\)
    Vậy phép tịnh tiến là một phép dời hình.
    * Phép đối xứng trục

    Giả sử \({\tilde N_d}\) là phép đối xứng qua đường thẳng \(d\)
    Giả sử

    \({{\tilde N}_d}:M \to M'\)

    \(N \to N'\)

    Gọi \(H\) và \(K\) lần lượt là trung điểm của \(MM’\) và \(NN’\).
    Ta có:

    \(\eqalign{
    & \overrightarrow {MN} + \overrightarrow {M'N'}\cr & = \left( {\overrightarrow {MH} + \overrightarrow {HK} + \overrightarrow {KN} } \right) \cr & + \left( {\overrightarrow {M'H} + \overrightarrow {HK} + \overrightarrow {KN'} } \right) \cr & = \left( {\overrightarrow {MH}  + \overrightarrow {M'H} } \right) + \left( {\overrightarrow {KN}  + \overrightarrow {KN'} } \right) \cr & + \left( {\overrightarrow {HK}  + \overrightarrow {HK} } \right) \cr &  = \overrightarrow 0  + \overrightarrow 0  + 2\overrightarrow {HK} \cr &= 2\overrightarrow {HK} \cr 
    & \overrightarrow {MN} - \overrightarrow {M'N'}\cr & = (\overrightarrow {HN} - \overrightarrow {HM} )- ( \overrightarrow {HN'} - \overrightarrow {HM'} )\cr & = \left( {\overrightarrow {HN}  - \overrightarrow {HN'} } \right) + \left( {\overrightarrow {HM'}  - \overrightarrow {HM} } \right)\cr &= \overrightarrow {N'N} + \overrightarrow {MM'} \cr} \)

    Vì \(\overrightarrow {MM'}  \bot \overrightarrow {HK} \) và \(\overrightarrow {N'N}  \bot  \overrightarrow {HK} \) nên

    \(\eqalign{
    & {\overrightarrow {MN} ^2} - {\overrightarrow {M'N'} ^2} \cr &= \left( {\overrightarrow {MN} + \overrightarrow {M'N'} } \right)\left( {\overrightarrow {MN} - \overrightarrow {M'N'} } \right) \cr &= 2\overrightarrow {HK} \left( {\overrightarrow {N'N} + \overrightarrow {MM'} } \right) \cr &= 2\overrightarrow {HK} .\overrightarrow {N'N}  + 2\overrightarrow {HK} .\overrightarrow {MM'}  \cr &= 2.0 + 2.0 = 0 \cr 
    & \Rightarrow M{N^2} = M'N{'^2} \Rightarrow MN = M'N' \cr} \)

    Vậy phép đối xứng qua \(d\) là phép dời hình.

    Cách khác:

    Giả sử phép đối xứng qua đường thẳng d biến M thành M’, N thành N’

    Gọi (P) là mặt phẳng chứa NM’ và (P) // MM’

    \({M_1},{M_1}'\) lần lượt là hình chiếu của M, M’ trên (P); O = ∩(P).

    Ta có d ⊥ (P) nên O đồng thời là trung điểm của \({M_1}{M_1}'\) và NN'.

    Vậy phép đối xứng tâm O biến \(M_1\) thành \(M_1'\), N thành N’ nên \({M_1},{M_1}'\) nên \(M_1 N=M_1'N'\).

    Mặt khác \(M_1 N,M_1'N'\) lần lượt là hình chiếu của MN, M’N’ trên (P), MM’ // (P) nên MN = M’N’.

    Vậy phép đối xứng qua đường thẳng là phép dời hình.

    * Phép đối xứng tâm
    Nếu phép đối xứng qua tâm \(O\) biến hai điểm \(M, N\) lần lượt thành hai điểm \(M’, N’\) thì \(\overrightarrow {OM'}  =  - \overrightarrow {OM} ;\overrightarrow {ON'}  =  - \overrightarrow {ON} \)
    suy ra \(\overrightarrow {M'N'}  = \overrightarrow {ON'}  - \overrightarrow {OM'}  \) \(  =  - \overrightarrow {ON}  + \overrightarrow {OM} = \overrightarrow {NM}  \) \(\Rightarrow M'N' = MN\)
    Vậy phép đối xứng tâm \(O\) là một phép dời hình.

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO