Bài 30 trang 27 SGK Đại số và Giải tích 12 Nâng cao

Cho hàm số a) Xác định điểm I thuộc đồ thị (C) của hàm số đã cho biết rằng hoành độ của điểm I là nghiệm của phương trình b) Viết công thức chuyển hệ tọa độ trong phép định tiến theo vectơ và viết phương trình của đường cong (C) đối với hệ tọa độ IXY. Từ đó suy ra rằng I là tâm đối xứng của đường cong (C). c) Viết phương trình tiếp tuyến của đường cong (C) tại điểm I đối với hệ tọa độ Oxy. Chứng minh rằng trên khoảng đường cong (C) nằm phía dưới tiếp tuyến tại I của (C) và trên khoảng đ

    Cho hàm số \(f\left( x \right) = {x^3} - 3{x^2} + 1\).

    LG a

    Xác định điểm \(I\) thuộc đồ thị \((C)\) của hàm số đã cho biết rằng hoành độ của điểm \(I\) là nghiệm của phương trình \(f''\left( x \right) = 0\).

    Lời giải chi tiết:

    \(f'\left( x \right) = 3{x^2} - 6x;f''\left( x \right) = 6x - 6\)
    \(f''\left( x \right) = 0  \Leftrightarrow 6x - 6 = 0\)

    \(\Leftrightarrow x = 1;f\left( 1 \right) =  - 1\)
    Vậy \(I\left( {1; - 1} \right)\)


    LG b

    Viết công thức chuyển hệ tọa độ trong phép định tiến theo vectơ \(\overrightarrow {OI} \) và viết phương trình của đường cong \((C)\) đối với hệ tọa độ \(IXY\). Từ đó suy ra rằng \(I\) là tâm đối xứng của đường cong \((C)\).

    Lời giải chi tiết:

    Công thức chuyển trục tọa độ tịnh tiến theo \(\overrightarrow {OI} \) là

    \(\left\{ \matrix{
    x = X + 1 \hfill \cr 
    y = Y - 1 \hfill \cr} \right.\)

    Phương trình đường cong \((C)\) đối với hệ tọa độ \(IXY\) là

    \(\eqalign{
    & Y - 1 = {\left( {X + 1} \right)^3} - 3{\left( {X + 1} \right)^2} + 1 \cr 
    &= {X^3} + 3{X^2} + 3X + 1 - 3{X^2} - 6X - 3 + 1 \cr& = {X^3} - 3X - 1\cr&\Leftrightarrow Y = {X^3} - 3X \cr} \)

    Vì đây là một hàm số lẻ nên đồ thị \((C)\) của nó nhận gốc tọa độ \(I\) làm tâm đối xứng.


    LG c

    Viết phương trình tiếp tuyến của đường cong \((C)\) tại điểm \(I\) đối với hệ tọa độ \(Oxy\). Chứng minh rằng trên khoảng \(\left( { - \infty ;1} \right)\) đường cong \((C)\) nằm phía dưới tiếp tuyến tại \(I\) của \((C)\) và trên khoảng \(\left( {1; + \infty } \right)\) đường cong \((C)\) nằm phía trên tiếp tuyến đó.

    Phương pháp giải:

    Trên khoảng \(\left( { - \infty ;1} \right)\), đường cong \((C)\) nằm phía dưới tiếp tuyến \(y = ax + b\) nếu \(f\left( x \right) < ax + b\) với mọi \(x<1\).

    Lời giải chi tiết:

    Phương trình tiếp tuyến của đường cong \((C)\) tại điểm \(I(1;-1)\) đối với hệ trục tọa độ \(Oxy\) là:

    y - f(1) = f' (1)(x-1) với f’(1) = -3; f(1) = -1

    hay \( y + 1 =  - 3\left( {x - 1} \right) \) \(\Leftrightarrow y =  - 3x + 2\)

    Đặt \(g\left( x \right) =  - 3x + 2\)
    \(f\left( x \right) - g\left( x \right) \)\(= {x^3} - 3{x^2} + 1 - \left( { - 3x + 2} \right)\) \( = {x^3} - 3{x^2} + 3x - 1 = {\left( {x - 1} \right)^3}\)

    Vì \(f\left( x \right) - g\left( x \right)<0\) với \(x<1\) và \(f\left( x \right) - g\left( x \right)>0\) với \(x>1\)

    Do đó trên khoảng \(\left( { - \infty ;1} \right)\), \((C)\) nằm phía dưới tiếp tuyến tại \(I\) của \((C)\) và trên khoảng \(\left( {1; + \infty } \right)\), \((C)\) nằm phía trên tiếp tuyến đó.

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO