Lý thuyết lôgarit

1. Định nghĩa Cho hai số dương a, b với a#1. Nghiệm duy nhất cảu phương trình ax=b được gọi là

    1. Định nghĩa

    Cho hai số dương a, b với \(a\ne1\). Nghiệm duy nhất của phương trình \({a^x} = b\) được gọi là \({\log _a}b\) ( tức là số \(\alpha\) có tính chất là \({a^\alpha } = b\)).

    Như vậy \({\log _a}b = \alpha  \Leftrightarrow {a^\alpha } = b\).

    Ví dụ: \({\log _4}16 = 2\) vì \({4^2} = 16\).

    2. Lôgarit thập phân và lôgarit tự nhiên

    Lôgarit cơ số 10 còn được gọi là lôgarit thập phân, số log10b thường được viết là logb hoặc lgb.

    Lôgarit cơ số \(e\) (\(e= \mathop {\lim }\limits_{n \to  + \infty } {\left( {1 + \dfrac 1 n} \right)^n}\) ≈ 2,718281828459045) còn được gọi là lôgarit tự nhiên, số logeb thường được viết là lnb.

    3. Tính chất của lôgarit

    Lôgarit có các tính chất rất phong phú, có thể chia ra thành các nhóm sau đây:

    1) Lôgarit của đơn vị và lôgarit của cơ số:

    Với cơ số tùy ý, ta luôn có loga1 = 0 và logaa= 1.

    2) Phép mũ hóa và phép lôgarit hóa theo cùng cơ số (mũ hóa số thực α theo cơ số a là tính aα; lôgarit hóa số dương b theo cơ số a là tính logab) là hai phép toán ngược nhau.

    \(∀a >0 \,(a\ne\) 1),  \(∀b> 0\), \({a^{{{\log }_a}b}} = b\)

    \(∀a >0 \, (a\ne 1)\), \({\log _a}{a^\alpha }= α\)

    3) Lôgarit và các phép toán: Phép lôgarit hóa biến phép nhân thành phép cộng, phép chia thành phép trừ, phép nâng lên lũy thừa thành phép nhân, phép khai căn thành phép chia, cụ thể là 

    Với \(\forall a,{b_1},{b_2} > 0,a \ne 1\) ta có:

    +) \({\log _a}\left( {{b_1}{b_2}} \right) = {\log _a}{b_1} + {\log _a}{b_2}\)

    +) \({\log _a}\left( {\dfrac{{{b_1}}}{{{b_2}}}} \right) = {\log _a}{b_1} - {\log _a}{b_2}\)

    +) \(∀a,b >0\, (a\ne 1),\)  \(∀α\) ta có:

    \({\log _a}{b^\alpha } = \alpha. {\log _a}b\)

    \({\log _a}\root n \of b  = \dfrac{1}{n}.{\log _a}b\)

    Ví dụ: Tính \(A = {\log _2}\dfrac{{15}}{2} - 2{\log _2}\sqrt 3 \).

    Ta có:

    \(\begin{array}{l}A = {\log _2}\dfrac{{15}}{2} - 2{\log _2}\sqrt 3 \\\,\,\,\,\, = {\log _2}15 - {\log _2}2 - 2.\dfrac{1}{2}{\log _2}3\\\,\,\,\,\, = {\log _2}\left( {3.5} \right) - 1 - {\log _2}3\\\,\,\,\,\, = {\log _2}3 + {\log _2}5 - 1 - {\log _2}3\\\,\,\,\,\, = {\log _2}5 - 1\end{array}\)

    4) Đổi cơ số: Có thể chuyển các phép lấy lôgarit theo những cơ số khác nhau về việc tính lôgarit theo cùng một cơ số chung, cụ thể là 

    \(∀a,b,c  >0 \, (a, c\ne1)\), \({\log _a}b = \dfrac{{{\log }_c}b} {{{\log }_c}a}\).

    Đặc biệt \(∀a,b >0 \, (a,b \ne1) \, {\log _a}b = \dfrac{1}{{{\log }_b}a}\)

    \(∀a,b >0 \, (a \ne1), ∀α, β\, (α\ne 0)\) ta có:

    \({\log _{{a^\alpha }}}b = \dfrac{1}{\alpha }{\log _a}b\)

    \({\log _{{a^\alpha }}}{b^\beta } = \dfrac{\beta}{ \alpha }{\log _a}b\)

    \({\log _a}\dfrac{1}{b} =  - {\log _a}b\left( {0 < a \ne 1;b > 0} \right)\)

    \({\log _a}\sqrt[n]{b} = {\log _a}{b^{\frac{1}{n}}} = \dfrac{1}{n}{\log _a}b\) \( \left( {0 < a \ne 1;b > 0;n > 0;n \in {N^*}} \right)\)

    \({\log _a}b.{\log _b}c = {\log _a}c \Leftrightarrow {\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\) \(\left( {0 < a,b \ne 1;c > 0} \right)\)

    \({\log _a}b = \dfrac{1}{{{{\log }_b}a}} \Leftrightarrow {\log _a}b.{\log _b}a = 1\) \(\left( {0 < a,b \ne 1} \right)\)

    \({\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\) \(\left( {0 < a \ne 1;b > 0;n \ne 0} \right)\)

    Ví dụ: Tính \(B = 3{\log _8}12 - 2{\log _2}3 + 12{\log _{16}}\sqrt[3]{3}\)

    Ta có:

    \(\begin{array}{l}B = 3{\log _8}12 - 2{\log _2}3 + 12{\log _{16}}\sqrt[3]{3}\\\,\,\,\,\, = 3{\log _{{2^3}}}12 - 2{\log _2}3 + 12.{\log _{{2^4}}}\sqrt[3]{3}\\\,\,\,\,\, = 3.\dfrac{1}{3}{\log _2}12 - 2{\log _2}3 + 12.\dfrac{1}{4}{\log _2}\sqrt[3]{3}\\\,\,\,\,\, = {\log _2}12 - 2{\log _2}3 + 3{\log _2}\sqrt[3]{3}\\\,\,\,\,\, = {\log _2}12 - {\log _2}{3^2} + {\log _2}{\left( {\sqrt[3]{3}} \right)^3}\\\,\,\,\,\, = {\log _2}12 - {\log _2}9 + {\log _2}3\\\,\,\,\,\, = {\log _2}\dfrac{{12.3}}{9}\\\,\,\,\,\, = {\log _2}4\\\,\,\,\,\, = {\log _2}{2^2}\\\,\,\,\,\, = 2\end{array}\)

    Hệ quả:

    a) Nếu \(a > 1;b > 0\) thì \({\log _a}b > 0 \Leftrightarrow b > 1;\) \({\log _a}b < 0 \Leftrightarrow 0 < b < 1\).

    b) Nếu \(0 < a < 1;b > 0\) thì \({\log _a}b < 0 \Leftrightarrow b > 1;\) \({\log _a}b > 0 \Leftrightarrow 0 < b < 1\).

    c) Nếu \(0 < a \ne 1;b,c > 0\) thì \({\log _a}b = {\log _a}c \Leftrightarrow b = c\).

    Chú ý:

    Logarit thập phân \({\log _{10}}b = \log b\left( { = \lg b} \right)\) có đầy đủ tính chất của logarit cơ số \(a\).
     

    SGK Toán lớp 12

    Giải bài tập toán lớp 12 như là cuốn để học tốt Toán lớp 12. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12, giúp ôn luyện thi THPT Quốc gia. Giai toan 12 xem mục lục giai toan lop 12 sach giao khoa duoi day

    GIẢI TÍCH 12

    HÌNH HỌC 12

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM - TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    CHƯƠNG I. KHỐI ĐA DIỆN

    CHƯƠNG II. MẶT NÓN, MẶT TRỤ, MẶT CẦU

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    Xem Thêm