Bài 9 trang 190 SGK Đại số và Giải tích 12 Nâng cao

Xác định tập hợp câc điểm reong mặt phẳng phức biểu diễn các số phức z thỏa mãn từng điều kiện sau:

     Xác định tập hợp câc điểm trong mặt phẳng phức biểu diễn các số phức \(z\) thỏa mãn từng điều kiện sau:

    LG a

    \(\left| {z - i} \right| = 1\)

    Phương pháp giải:

    Điểm M(x;y) biểu diễn số phức z=x+yi.

    Lời giải chi tiết:

    Giả sử z=x+yi, \(x,y\in R\)

    Khi đó \(z - i = x + \left( {y - 1} \right)i\)

    \(\left| {z - i} \right| = 1\)\( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = 1\).

    Tập hợp các điểm M biểu diễn số phức z là đường tròn tâm \(I\left( {0,1} \right)\) bán kính \(1\).


    LG b

    \(\left| {{{z - i} \over {z + i}}} \right| = 1\)

    Phương pháp giải:

    Sử dụng công thức \(\left| {\dfrac{z}{{z'}}} \right| = \frac{{\left| z \right|}}{{\left| {z'} \right|}}\)

    Lời giải chi tiết:

    Giả sử z=x+yi, \(x,y\in R\).

    Ta có:\(\left| {{{z - i} \over {z + i}}} \right| = 1 \) \( \Leftrightarrow \frac{{\left| {z - i} \right|}}{{\left| {z + i} \right|}} = 1\) \(\Leftrightarrow \left| {z - i} \right| = \left| {z + i} \right| \) \(\Leftrightarrow \left| {x + \left( {y - 1} \right)i} \right| = \left| {x + \left( {y + 1} \right)i} \right|\)

    \( \Leftrightarrow {x^2} + {\left( {y - 1} \right)^2} = {x^2} + {\left( {y + 1} \right)^2}\) \(\Leftrightarrow {x^2} + {y^2} - 2y + 1 \) \(= {x^2} + {y^2} + 2y + 1\)

    \( \Leftrightarrow y = 0 \)

    \(\Leftrightarrow \) z là số thực.

    Tập hợp M là trục thực \(Ox\).


    LG c

    \(\left| z \right| = \left| {\overline z  - 3 + 4i} \right|\)

    Phương pháp giải:

    Giả sử z=x+yi, \(x,y\in R\), thay vào điều kiện bài cho tìm mối quan hệ x,y.

    Lời giải chi tiết:

    Giả sử z=x+yi, \(x,y\in R\).

    \(\left| z \right| = \left| {\overline z  - 3 + 4i} \right| \) \(\Leftrightarrow \left| {x + yi} \right| = \left| {x - yi - 3 + 4i} \right|\)

    \( \Leftrightarrow \left| {x + yi} \right| = \left| {\left( {x - 3} \right) + \left( {4 - y} \right)i} \right| \) \( \Leftrightarrow {x^2} + {y^2}\) \( = {\left( {x - 3} \right)^2} + {\left( {4 - y} \right)^2}\)

    \( \Leftrightarrow 6x + 8y = 25\)

    Tập hợp M là đường thẳng có phương trình: \(6x + 8y = 25\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO