Bài 4 trang 122 SGK Hình học 12 Nâng cao

Chứng minh rằng trung điểm các cạnh của một hình tứ diện đều là các đỉnh của một hình tám mặt đều. Hãy so sánh thể tích của tứ diện đều đã cho và thể tích của hình tám mặt đều đó.

    Đề bài

    Chứng minh rằng trung điểm các cạnh của một hình tứ diện đều là các đỉnh của một hình tám mặt đều. Hãy so sánh thể tích của tứ diện đều đã cho và thể tích của hình tám mặt đều đó.

    Lời giải chi tiết

    Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, CD, AC, BD, AD, BC của tứ diện đều ABCD thì các tam giác MPR, MRQ, MQS, MSP, NPR, NRQ, NQS, NSP là những tam giác đều, vậy ta có hình tám mặt đều MPNQRS.

    Vì các tứ diện AMPR, BMQS, CPSN, DQNR đều là những tứ diện đồng dạng với tứ diện ABCD với tỉ số \(k = {1 \over 2}\) nên ta có thể tích bằng \({V \over 8}.\)

    Suy ra \({V_{MPRQSN}} = V - 4{V \over 8} = {V \over 2}.\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO