Bài 2.27 trang 117 SBT giải tích 12

Giải bài 2.27 trang 117 sách bài tập giải tích 12. Hãy so sánh mỗi số sau với 1...

    Đề bài

    Hãy so sánh mỗi số sau với \(1\).

    a) \({(0,1)^{\sqrt 2 }}\)                     b) \({(3,5)^{0,1}}\)

    c) \({\pi ^{ - 2,7}}\)                          d) \({\left( {\dfrac{{\sqrt 5 }}{5}} \right)^{ - 1,2}}\)

    Phương pháp giải - Xem chi tiết

    Sử dụng tính chất của hàm số mũ: đồng biến nếu \(a > 1\) và nghịch biến nếu \(0 < a < 1\).

    Lời giải chi tiết

    a) Vì \(0 < 0,1 < 1\) nên hàm số \(y = {\left( {0,1} \right)^x}\) nghịch biến.

    Mà \(\sqrt 2  > 0\) nên \({(0,1)^{\sqrt 2 }} < {\left( {0,1} \right)^0} = 1\).

    b) Vì \(3,5 > 1\) nên hàm số \(y = {\left( {3,5} \right)^x}\) đồng biến trên \(\mathbb{R}\).

    Mà \(0,1 > 0\) nên \({(3,5)^{0,1}} > {\left( {3,5} \right)^0} = 1\)

    c) Vì \(\pi  > 1\) nên hàm số \({\pi ^x}\) đồng biến trên \(\mathbb{R}\).

    Mà \( - 2,7 < 0\) nên \({\pi ^{ - 2,7}} < {\pi ^0} = 1\)

    d) Vì \(0 < \dfrac{{\sqrt 5 }}{5} < 1\) nên hàm số \(y = {\left( {\dfrac{{\sqrt 5 }}{5}} \right)^x}\) nghịch biến trên \(\mathbb{R}\).

    Mà \( - 1,2 < 0\) nên \({\left( {\dfrac{{\sqrt 5 }}{5}} \right)^{ - 1,2}} > {\left( {\dfrac{{\sqrt 5 }}{5}} \right)^0} = 1\).

    Xemloigiai.com

    SBT Toán lớp 12

    Giải sách bài tập toán hình học và giải tích lớp 12. Giải chi tiết tất cả câu hỏi trong các chương và bài chi tiết trong SBT hình học và giải tích toán 12 cơ bản với cách giải nhanh và ngắn gọn nhất

    GIẢI TÍCH SBT 12

    HÌNH HỌC SBT 12

    Chương 1: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

    Chương 2: Hàm số lũy thừa. Hàm số mũ và hàm số Logarit

    Chương 3: Nguyên hàm, tích phân và ứng dụng

    Chương 4: Số phức

    Chương 1: Khối đa diện

    Chương 2: Mặt nón, mặt trụ, mặt cầu

    Chương 3: Phương pháp tọa độ trong không gian

    Ôn tập cuối năm Hình học 12