Bài 18 trang 90 SGK Hình học 12 Nâng cao

Cho hai mặt phẳng có phương trình là và Với giá trị nào của m thì: a) Hai mặt phẳng đó song song ; b) Hai mặt phẳng đó trùng nhau ; c) Hai mặt phẳng đó cắt nhau ; d) Hai mặt phẳng đó vuông góc?

    Cho hai mặt phẳng có phương trình là 
    \(2x - my + 3z - 6 + m = 0\) và \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\)
    Với giá trị nào của m thì:

    LG a

    Hai mặt phẳng đó song song ;

    Phương pháp giải:

    Điều kiện để hai mp song song là \(\frac{a}{{a'}} = \frac{b}{{b'}} = \frac{c}{{c'}} \ne \frac{d}{{d'}}\)

    Lời giải chi tiết:

    ĐK hai mặt phẳng đã cho song song với nhau là:

    \(\begin{array}{l}\frac{2}{{m + 3}} = \frac{{ - m}}{{ - 2}} = \frac{3}{{5m + 1}} \ne \frac{{m - 6}}{{ - 10}}\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 3m - 4 = 0\\5{m^2} + m - 6 = 0\\5{m^2} - 29m + 24 \ne 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m = 1,m =  - 4\\m = 1,m =  - \frac{6}{5}\\m \ne 1,m \ne \frac{{24}}{5}\end{array} \right.\left( {VN} \right)\end{array}\)

    Hệ này vô nghiệm, nên không có m để hai mặt phẳng song song.

    Cách khác:

    Mặt phẳng \(2x - my + 3z - 6 + m = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_1}}  = \left( {2; - m;3} \right)\).
    Mặt phẳng \(\left( {m + 3} \right)x - 2y + \left( {5m + 1} \right)z - 10 = 0\) có vectơ pháp tuyến \(\overrightarrow {{n_2}}  = \left( {m + 3; - 2;5m + 1} \right)\).
    Ta có

    \(\left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \overrightarrow 0\) \( \Leftrightarrow \left\{ \matrix{
    - 5{m^2} - m + 6 = 0 \hfill \cr 
    - 7m + 7 = 0 \hfill \cr 
    {m^2} + 3m - 4 = 0 \hfill \cr} \right.\) \( \Leftrightarrow m = 1\)

    Với m = 1 thì hai mặt phẳng có phương trình \(2x - y + 3z - 5 = 0\) và \(4x - 2y + 6z - 10 = 0\) nên chúng trùng nhau.

    Vậy không tồn tại m để hai mặt phẳng đó song song.


    LG b

    Hai mặt phẳng đó trùng nhau ;

    Phương pháp giải:

    Điều kiện để hai mp song song là \(\frac{a}{{a'}} = \frac{b}{{b'}} = \frac{c}{{c'}} = \frac{d}{{d'}}\)

    Lời giải chi tiết:

    ĐK hai mặt phẳng đã cho trùng nhau là:

    \(\begin{array}{l}\frac{2}{{m + 3}} = \frac{{ - m}}{{ - 2}} = \frac{3}{{5m + 1}} = \frac{{m - 6}}{{ - 10}}\\ \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 3m - 4 = 0\\5{m^2} + m - 6 = 0\\5{m^2} - 29m + 24 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}m = 1,m =  - 4\\m = 1,m =  - \frac{6}{5}\\m = 1,m = \frac{{24}}{5}\end{array} \right.\end{array}\)

    \( \Leftrightarrow m = 1\)

    Với m = 1 thì hai mặt phẳng đó trùng nhau.


    LG c

    Hai mặt phẳng đó cắt nhau ;

    Lời giải chi tiết:

    Hai mặt phẳng cắt nhau khi và chỉ khi chúng không trùng nhau (vì theo câu a, hai mặt này không thể song song với nhau).

    Theo câu b) ta suy ra giá trị m đẻ hai mặt phẳng cắt nhau là: m ≠ 1

    Với \(m \ne 1\) thì hai mặt phẳng đó cắt nhau.


    LG d

    Hai mặt phẳng đó vuông góc?

    Phương pháp giải:

    Hai mặt phẳng đó vuông góc với nhau khi và chỉ khi

    \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0\)

    Lời giải chi tiết:

    Hai mặt phẳng đó vuông góc với nhau khi và chỉ khi

    \(\overrightarrow {{n_1}} .\overrightarrow {{n_2}}  = 0\) \( \Leftrightarrow 2\left( {m + 3} \right) + 2m + 3\left( {5m + 1} \right) = 0\) \( \Leftrightarrow 19m + 9 = 0 \Leftrightarrow m = {{ - 9} \over {19}}\)

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO