Bài 10 trang 9 SGK Đại số và Giải tích 12 Nâng cao

Tính tốc độ tăng dân số vào năm 1990 và năm 2008 của thị trấn. Vào năm nào thì tốc độ gia tăng dân số là 0,125 nghìn người/năm?

    Số dân của một thị trấn sau \(t\) năm kể từ năm \(1970\) được ước tính bởi công thức: \(f\left( t \right) = {{26t + 10} \over {t + 5}},f\left( t \right)\) được tính bằng nghìn người).

    LG a

    Tính số dân của thị trấn vào năm \(1980\) và năm \(1995\).

    Lời giải chi tiết:

    Vào năm \(1980\) thì \(t = 10\), số dân của thị trấn năm \(1980\) là:

    \(f\left( {10} \right) = {{26.10 + 10} \over {10 + 5}} = 18\) nghìn người

    Vào năm \(1995\) thì \(t=25\), số dân của thị trấn năm \(1995\) là:

    \(f\left( {25} \right) = {{26.25 + 10} \over {25 + 5}} = 22\) nghìn người.


    LG b

    Xem \(f\) là một hàm số xác định trên nửa khoảng \(\left[ {0; + \infty } \right)\,\). Tính \(f'\) và xét chiều biến thiên của hàm số \(f\) trên nửa khoảng \(\left[ {0; + \infty } \right)\,\)

    Lời giải chi tiết:

    Ta có: \(f'\left( t \right) = {{120} \over {{{\left( {t + 5} \right)}^2}}} > 0\) với mọi \(t>0\)

    Hàm số đồng biến trên \(\left[ {0; + \infty } \right)\).


    LG c

    Đạo hàm của hàm số \(f\) biểu thị tốc độ tăng dân số của thị trấn ( tính bằng nghìn người/năm).

    • Tính tốc độ tăng dân số vào năm \(1990\) và năm \(2008\) của thị trấn.

    • Vào năm nào thì tốc độ gia tăng dân số là \(0,125\) nghìn người/năm?

    Lời giải chi tiết:

    Tốc độ tăng dân số vào năm \(1990\) (ứng với t=1990-1970=20) là \(f'\left( {20} \right) = {{120} \over {{({20+5})^2}}} = 0,192\)

    Tốc độ tăng dân số vào năm \(2008\) (ứng với t=2008-1970=38) là \(f'\left( {38} \right) = {{120} \over {{({38+5})^2}}} \approx 0,065\)

    Ta có: \(f'(t)=0,125\) \(\Leftrightarrow {{120} \over {{{\left( {t + 5} \right)}^2}}} = 0,125\) \( \Leftrightarrow t + 5 = \sqrt {{{120} \over {0,125}}}  \approx 31 \)

    \(\Rightarrow t \approx 26\)

    Vào năm \(1996\) tốc độ tăng dân số của thị trấn là \(0,125\).

    Xemloigiai.com

    SGK Toán 12 Nâng cao

    Giải bài tập toán lớp 12 Nâng cao như là cuốn để học tốt Toán lớp 12 Nâng cao. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập giải tích và hình học SGK Toán lớp 12 Nâng cao, giúp ôn luyện thi THPT Quốc gia

    GIẢI TÍCH 12 NÂNG CAO

    HÌNH HỌC 12 NÂNG CAO

    CHƯƠNG I. ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

    CHƯƠNG II. HÀM SỐ LŨY THỪA, HÀM SỐ MŨ VÀ HÀM SỐ LÔGARIT

    CHƯƠNG III. NGUYÊN HÀM, TÍCH PHÂN VÀ ỨNG DỤNG

    CHƯƠNG IV. SỐ PHỨC

    ÔN TẬP CUỐI NĂM ĐẠI SỐ VÀ GIẢI TÍCH - TOÁN 12 NÂNG CAO

    CHƯƠNG I. KHỐI ĐA DIỆN VÀ THỂ TÍCH CỦA CHÚNG

    CHƯƠNG II. MẶT CẦU, MẶT TRỤ, MẶT NÓN

    CHƯƠNG III. PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN

    ÔN TẬP CUỐI NĂM HÌNH HỌC - TOÁN 12 NÂNG CAO