Bài 13 trang 72 SGK Toán 9 tập 2

Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.

    Đề bài

     Chứng minh rằng trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau.

    Phương pháp giải - Xem chi tiết

    + Dựa vào tính chất tam giác cân và tính chất hai đường thẳng song song để chỉ ra các cung có số đo bằng nhau.

    + Sử dụng : “ Hai cung bằng nhau nếu chúng có số đo bằng nhau”

    Lời giải chi tiết

    TH1:  Tâm đường tròn nằm trong hai dây song song

     

    Giả sử \(AB\) và \(CD\) là các dây song song của đường tròn \((O)\). Ta chứng minh \(\overparen{AC}\)= \(\overparen{BD}\).

    Kẻ \(OI \bot AB\) \((I \in AB)\) và \(OK \bot CD (K\in CD)\).

    Do \(AB //CD\) nên \(OI \bot CD\) (Đường thẳng vuông góc với 1 trong 2 đường thẳng song song thì cũng vuông góc với đường thẳng kia )

    Do đó, OI trùng với OK (Qua O chỉ có 1 đường thẳng vuông góc với CD) hay \(I,O,K\) thẳng hàng.

    Do các tam giác \(OAB, OCD\) là các tam giác cân đỉnh \(O\) nên các đường cao kẻ từ đỉnh đồng thời là phân giác.

    Vì vậy ta có: \(\widehat {{O_1}} = \widehat {{O_2}} \) và \( \widehat {{O_3}} = \widehat {{O_4}}\)

    Ta có: \(\widehat {AOC} = {180^0} - \widehat {{O_1}} - \widehat {{O_3}} = {180^0} - \widehat {{O_2}} - \widehat {{O_4}} = \widehat {BOD}\)

    Suy ra  \(\overparen{AC}\)= \(\overparen{BD}\).

    TH2: Tâm đường tròn nằm ngoài hai dây song song

    Giả sử đường tròn \(\left( O \right)\) có hai dây song song \(AB//CD.\) Ta chứng minh cung (\overparen{AC}\)  = \(\overparen{BD}\) .

    Qua \(O\) kẻ đường kính \(EG//CD \Rightarrow EG//AB\) .

    Nối \(OA,OC,OB,OD \Rightarrow OA = OB = OC = OD\) (= bán kính)

    + Xét tam giác \(OAB\) cân tại \(O\left( {{\rm{do}}\,OA = OB} \right)\) nên \(\widehat {OAB} = \widehat {OBA}\) (1)

    Lại có \(EG//AB \Rightarrow \) \(\widehat {OAB} = \widehat {AOE};\,\widehat {OBA} = \widehat {BOG}\)  (so le trong)  (2)

    Từ (1) và (2) \(\Rightarrow \) \(\widehat {EOA} = \widehat {BOG}\)  (*)

    +  Xét tam giác \(OCD\) cân tại \(O\left( {{\rm{do}}\,OC = OD} \right)\) nên \(\widehat {OCD} = \widehat {ODC}\) (3)

    Lại có \(EG//CD \Rightarrow \) \(\widehat {OCD} = \widehat {COE};\,\widehat {ODC} = \widehat {DOG}\)  (so le trong)  (4)

    Từ (3) và (4) suy ra \(\widehat {EOC} = \widehat {DOG}\) (**)

    Từ (*) và (**) suy ra \(\widehat {EOA} - \widehat {EOC} = \widehat {BOG} - \widehat {DOG} \Leftrightarrow \widehat {AOC} = \widehat {BOD}  \) \( \Rightarrow \overparen{AC}\)\(=\overparen{BD}\) (đpcm) 

    SGK Toán lớp 9

    Giải bài tập toán lớp 9 như là cuốn để học tốt Toán lớp 9. Tổng hợp công thức, lý thuyết, phương pháp giải bài tập đại số và hình học SGK Toán lớp 9 giúp luyện thi vào 10 hiệu quả. Giai toan 9 xem mục lục giai toan lop 9 sach giao khoa duoi day

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 1

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 1

    PHẦN ĐẠI SỐ - TOÁN 9 TẬP 2

    PHẦN HÌNH HỌC - TOÁN 9 TẬP 2

    CHƯƠNG I. CĂN BẬC HAI. CĂN BẬC BA

    CHƯƠNG II. HÀM SỐ BẬC NHẤT

    CHƯƠNG I. HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

    CHƯƠNG II. ĐƯỜNG TRÒN

    CHƯƠNG III. HỆ HAI PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN

    CHƯƠNG IV. HÀM SỐ y = ax^2 (a ≠ 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN

    CHƯƠNG III. GÓC VỚI ĐƯỜNG TRÒN

    CHƯƠNG IV. HÌNH TRỤ - HÌNH NÓN - HÌNH CẦU

    BÀI TẬP ÔN CUỐI NĂM - TOÁN 9

    Xem Thêm

    Lớp 9 | Các môn học Lớp 9 | Giải bài tập, đề kiểm tra, đề thi Lớp 9 chọn lọc

    Danh sách các môn học Lớp 9 được biên soạn theo sách giáo khoa mới của bộ giáo dục đào tạo. Kèm theo lời giải sách bài tập, sách giáo khoa, đề kiểm tra 15 phút, 45 phút (1 tiết), đề thi học kì 1 và học kì 2 năm học 2025 ngắn gọn, chi tiết dễ hiểu.

    Toán Học

    Vật Lý

    Hóa Học

    Ngữ Văn

    Sinh Học

    GDCD

    Tin Học

    Tiếng Anh

    Công Nghệ

    Lịch Sử & Địa Lý

    Âm Nhạc & Mỹ Thuật